Hardness of Approximation for Crossing Number

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness of approximation for crossing number

We show that, if P6=NP, there is a constant c0 > 1 such that there is no c0approximation algorithm for the crossing number, even when restricted to 3-regular graphs.

متن کامل

On Hardness of the Joint Crossing Number

The Joint Crossing Number problem asks for a simultaneous embedding of two disjoint graphs into one surface such that the number of edge crossings (between the two graphs) is minimized. It was introduced by Negami in 2001 in connection with diagonal flips in triangulations of surfaces, and subsequently investigated in a general form for smallgenus surfaces. We prove that all of the commonly con...

متن کامل

METAHEURISTIC ALGORITHMS FOR MINIMUM CROSSING NUMBER PROBLEM

This paper presents the application of metaheuristic methods to the minimum crossing number problem for the first time. These algorithms including particle swarm optimization, improved ray optimization, colliding bodies optimization and enhanced colliding bodies optimization. For each method, a pseudo code is provided. The crossing number problem is NP-hard and has important applications in eng...

متن کامل

A Tighter Insertion-Based Approximation of the Crossing Number

Let G be a planar graph and F a set of additional edges not yet in G. The multiple edge insertion problem (MEI) asks for a drawing of G+F with the minimum number of pairwise edge crossings, such that the subdrawing of G is plane. As an exact solution to MEI is NP-hard for general F , we present the first approximation algorithm for MEI which achieves an additive approximation factor (depending ...

متن کامل

Odd Crossing Number Is Not Crossing Number

The crossing number of a graph is the minimum number of edge intersections in a plane drawing of a graph, where each intersection is counted separately. If instead we count the number of pairs of edges that intersect an odd number of times, we obtain the odd crossing number. We show that there is a graph for which these two concepts differ, answering a well-known open question on crossing numbe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2012

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-012-9440-6